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Stability of Multifrequency
Negative-Resistance Oscillators

BEVAN D. BATES, MEMBER, IEEE, AND PETER J. KHAN, SENIOR MEMBER, IEEE

Abstract —A general criterion is derived for the stability of a negative-
resistance oscillator with respect to small perturbations in the operating
point. The derivation applies when the oscillator output consists of an

arbitrary number of related frequency components, including possible -

nonharmonic components, Examples are given of the application of the
stability criterion to coaxial IMPATT oscillator circuits, with experimental
verification of the frequency and output power at theoretically determined
stable operating points.

I. INTRODUCTION
EGATIVE-RESISTANCE devices find widespread

application in microwave oscillators. As a conse- -

quence of the nonlinearity of the negative resistance and of
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the complicated frequency dependence of the impedance
characteristic of the passive microwave circuit to which the
device is connected, the resulting signal will generally con-
tain harmonic components of the fundamental oscillation
frequency. However, in the more general case, the frequency
components in the oscillation may not be harmonically
related due to parametric effects, and its up-converted
low-frequency oscillation.

This paper presents expressions which permit determina-
tion of the stability of the oscillation state for the case
where the device impedance is a function of both excitation

., and frequency, and an arbitrary number of frequency

components are present. Use of the stability criteria de-
rived here provides a more accurate determination of the
oscillation characteristics of IMPATT and transferred-elec-
tron-device circuits using a realistic circuit model of the
microwave mounting and impedance-transforming struc-
ture.

The oscillator stability studies derive from the funda-
mental work of Kurokawa [1], who developed a first-order
theory describing the behavior of a one-port negative resis-
tance embedded in a general passive multiple-resonant
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circuit: this led to a set of equations, having simple graphi-
cal interpretation, for a device with a frequency-indepen-
dent impedance connected to a general linear network with
a frequency-dependent impedance.
The restriction in the Kurokawa theory to a sinusoidal
- oscillator was relaxed by Brackett [2], who extended the
theory to include a second-harmonic component. However,
Brackett incompletely accounted for the harmonic relation-

ship between the two frequencies, resulting in an incorrect -

formulation of the stability equations. Brackett also as-
sumed that admittances y;, and y,, which express
frequency conversion between the two frequencies present,
are both proportional to the fundamental voltage V; and
independent of the harmonic voltage V,. He also retained
the assumption of frequency-independent device imped-
ance. Foulds and Sebastian [3] applied the describing-func-
tion approach of Gustafsson ef al. [4] to the study of
oscillators with a second-harmonic voltage component pre-
sent in addition to the fundamental, However, their stabil-
ity analysis also failed to correctly account for the interac-
tion between the fundamental and second-harmonic com-
ponents. They consequently arrived at the incorrect conclu-
sion that there exists a stability condition that must be
satisfied at each harmonic frequency of interest. The analy-
sis presented here, however, shows that, for purely harmonic
interactions, only one stability condition must be satisfied
regardless of the number of harmonics considered. Accu-
rate determination of this condition, however; requires
consideration of all the frequencies present in the system.

The present paper draws on the approaches of Brackett
and of Foulds and Sebastian, but provides an analysis

which is of greater generality and avoids the deficiencies of -

both these approaches.

1I. TWO-FREQUENCY OSCILLATOR STABILITY

To aid understanding and comparison with previous
work, the analysis is set out initially for two-frequency
components, i.e., the fundamental and the second harmonic,
in the oscillator signal. In the next section, this analysis is
generalized to an arbitrary number of frequency compo-
nents which are not restricted to a harmonic relationship.

The derivation here is in terms of admittances, but.could
equally well be carried out with impedances. The analysis
does not require the assumptions of proportional coupling

and - frequency-independent device impedances made by -

Brackett [2].

The time-varying voltage V(¢) across the device (Fig. 1),
or the nonlinear portion of the device if its linear compo-
nents are included in the coupling circuit, is given by

V(t) =V,cos(wt + ¢, )+ V,cos (w,t + ¢;)

with the assumption of only two-frequency components
present and w, = 2w,.

Application of the Kurokawa condition at the funda-
mental and second-harmonic frequencies gives

YCI(w1)+YDl(“’19 V1, V2,915 4’2) =0
Yo, (@) +Yp (@, V1, V3,91, 9,) =0

ey
@)
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Fig. 1.

where .

Ye,, Y, are circuit admittances, and

Yy, Yp, are diode admittances, with

the subscripts 1 and 2 denoting the fundamental ‘md

second-harmonic components, respectively. Equations (1)
and (2) may be expressed in the form
(3)

it ja=0
where o
pk=Re(YCk+ YDk) and qk=1m(YCk+ YDIc)’

' for k=1,2.

Consider small perturbations dp, and dg, in the operating
point such that p, = p,, under steady-state conditions and
Pi = Dk, + dp, when the state is perturbed, and similarly
for g,. This is denoted by the notation

Pu= Protdpy (4)
and ’

9%~ ko dqy. (5)

Let the corresponding perturbations in the operatmg con-

ditions be: 8V, 6¢k, and 8w, such that

Vi = Vio + 8V (6)
b = Do+ 09; (M
Wy = Wy, + 80y, (8)

Because 6Vk, 8¢, and ka are small quantities, (3) can be
expanded in a Taylor series about the operatmg point. This
gives the result '

(Pro+dpi)+ J(4ro + day)

; apko apka
Prot 3y v,
apko

a¢

apko

09,
apko
30, 0¢ }

aqko
99,

aqko
FP }

o+

'6%+ '8¢1

apko 8 +

-0, +

aqko
av,

aqko

v, 87, +

+J{qk0+ '8V1+ '8¢1

aqko .
+ ©)

Note that (3) is satisfied at the perturbed operating point
only by a complex 8w,. Kurokawa [1] showed that, for
small perturbations, 6%, and 8¢, are related by

d(6¢k)

8¢, + aq’“’ Swy +

(10)

w1th 0V, and 8¢, assumed to be slowly varying functions
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of time ¢. Because w, = 2w, then dw, = 28w, i.c.,

d(8,)  j dV) _[d(8¢r) j d(3n)]
dt Vo dt dt Vie dt

(11)
Equating real and imaginary parts and integrating with
respect to time, we obtain the relations

8¢, =260, +a (12)
8V, 26V,

—*= +b 13
T~ Vi ®3)

where a and b are independent of time.
Substituting these values into (9) and using (10), we
obtain

apko. apko
{80 Sv, + a0, (26v, + &)
4+ 9P ap 0
a4>k1 0, + k (26¢1+a)
apko 2apko (d(6¢1) _ d(ﬁl}l))
8“’1 dw, dt dt
d aq,, 9.,
+j{ aqv""-601+%"—(26vl+b)+ a(f;z 8¢,
qko aqko 2’(?qko
(26¢>1 )+( 0. T Ta, )
d(6¢1) _d(u) )\ _
( & T a ) =0 (14)
where
0¥y 8Py, Pko 09y, 94k,
S A O A
forl=1,2.

Because the operating point is independent of the choice
of reference phase, (14) is independent of 8¢;. Thus

apko + 28Pko

=( 15
R (1)
and
3‘1k 23‘Ik
g 2 =0. 16
34’1 34’2 (16)
Defining ‘
9Pro | 20Dk & o
dw; + do, du (17)
and
0o | 204y, a 9,
(7(01 + awZ N dwl (18)

and equating real and imaginary parts of (14) to zero, we
obtain

apko
v,

2gpk0)601 + quo 61')1
Uy

apko
9%,

apko

dpko 8¢1 a

b+—52a=0 (19)
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aqko 2aqko _ dpko .
(au1 T 0, )0 T e, 00
de d d
f]ko&i)1 qkob+ qko -0 (20)

d 4’2

where the dot denotes the time denvatlve.
_These equations may be solved by eliminating a, b, and
8¢ to yield an equation of the form

8o+ Zév=20 (21)
where Z is a scalar quantity of the form
(-2
=& €/ (22)

=)

Expressions for a, B, v, €, p, and 7 are readily calculated
using the general formulas given in the following section.
The solution to (21) has the form §v = Ae™#' where 4 is
determined by the initial conditions of dv. Stability of the
oscillation state requires 6v to decay, and thus requires
Z>0.

III. GENERAL MULTIFREQUENCY OSCILLATOR
STABILITY

The approach set out in the preceding section is readily
generalized to the case of an oscillator in which there are N
frequency components in the output. We take the time-
varying voltage component across the device to be

V()= % Vicos(wt +4,)

n=1

(23)

and proceed as in the previous section.
" Applying the Kurokawa condition at each frequency, we
obtain

Pt Jja. =0, for k=1,2,---, N. (24)

As before, let the operating point be perturbed by a small
amount such that

Pr = Prot dpy (25)
9 = o T A4y (26)
Vi—= Vi, + 0V, 27
b = bpp + 09 (28)
Wy = Wy, + 0w, (29)
Define vector quantities 8v, 8¢, and 8w by
8V, 8V, ) r
oo R w
8¢ =[8¢,66, - 89y ]" (31)
8w =[0w,0w, - bwy]” (32)

where the T denotes the transposed vector. We can then
expand (24) in a Taylor series about the operating point

and express the result in matrix form to obtain
Qdv+ Pd¢p+ Wdw=0 (33)

where Q, P, and W are square matrices whose elements are

—



BATES AND KHAN: STABILITY OF MULTIFREQUENCY OSCILLATORS

defined by
ko , - 9ko
Qu= Vlo( 3; + 312 ) (34)
_ apko . aqko
Fu="39, * 739, (35)
_9Pko , 9
W= dw, dw; (36)

for k=1,2,---,Nand [=1,2,---,N. ~
As before, after Kurokawa [1], we have the relation

8w =238 — jd0, (37)

where the dot denotes the derivative with respect to time.

Let there be M independent oscillation frequencies w,,,
for m=1,2,---,M and M < N. The w,, form a subset of
the w, in (23). For purely harmonic oscillations, there is
only one independent frequency, the fundamental. How-
ever, there also may be other independent frequencies
present: for example, those arising from a low-frequency
oscillation or due to other spurious circuit resonances. The
frequencies present in the system may be related to the
independent frequencies by a matrix L (of dimensions
N X M) such that

(38)

o= L,

where w, is a vector of length M with elements w,,.

Let the perturbations in the independent frequencies be
given by 8w, and the corresponding voltage and phase
perturbations by 8v, and 3¢;, respectively. We then have

Sw=Ldw,. (39)
Substituting from (37), we find
dw =28 — jov=L(8,— j30,). (40)
Integration of (40) gives 7
8¢ — jdv=L(8¢,— jdv,)+T(a+ jb) (41)

where a@ and b are constant vectors of length N-M. T is
an N X (N=M) matrix, which is obtained from an N X N
unit matrix by deleting the M columns corresponding to
the w,,. These are the same columns as those of the matrix
L which have L,, =1 for k=1,2,---, N, i.e., the columns
with unity on the diagonal of L. This relationship arises
because there is one complex constant for each dependent
frequency.
Separating (41) into real and imaginary parts, we have

3¢ =Ld¢,+Td (42)
dv=Ldy,+ Tc (43)
where, for convenience, we have put
d=a
and
=-—b.

Substituting for 8¢ and 8v in (33) and using (40), we
obtain

QLB8v,+ QTc + PL3¢, + PTd + WL (3¢, — jBb,) = 0.
(44)
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Since there is an arbitrary phase reference associated
with each independent frequency, then PL must be a zero
matrix. Thus, we may write (41) as

Adé; — jAdY, + BSv,+ Cc+ Dd =0 (45)
where
A=WL
B=QL
C=0T
D=PT.

Equating real and imaginary parts to zero, we have
A8+ AJ6,+Blv,+Ce+Dd=0  (46)
A B~ A0, +Bio,+Ce+Dd=0  (47)

where A=A,+ j4,, B=B,+ jB, C=C,+ jC, and D
=D,+ jD,. Thus, we have 2N equations in 2N un-
knowns, i.e., M phase angles 8¢, , M voltages 8v, , and
2(N—M) constants ¢, and d,. The method of solution is
to solve the 2(N— M) equations corresponding to the de-
pendent frequencies for ¢ and 'd in terms of 8¢; and 3v,
and then to substitute these values in the remaining 2 M
equations to solve for 8¢, and 3v,. As stability depends
only on 8v,, we need only to solve for 8v;, in the form

8, + Zdv, =0 (48)

where Z is an M X M matrix. The system will be stable if
and only if Z has eigenvalues with positive real parts.

The solution proceeds as follows: We separate the sys-
tem of equations in (46) and (47) by multiplying through
by matrices U and S. Here, U=T" and S is the unit
matrix with the rows corresponding to the dependent fre-
quencies deleted. Thus, the columns of S combined with
the columns of U constitute a unit matrix. Now let

A4,,=UA,, B,,=UB,, etc. (49)
Similarly let
A, =SA,,  B,=SB,et. -~ (50)
Equations (46) and (47) then may be written as
A, 8¢+ A, B0+ B30, +Cc+ D, d=0  (51)
A, D% — 4,86+ B, Bv,+Cc+ D d=0 (52)
A, b+ A,86,+ B, 0, +Cc+ D, d=0  (53)
A, B+ A, 6, + B b0, +Cpe+ D, d=0.  (54)
From (53) and (54)
e=—Xpe{ Xp, 86, + Y580, + Xpgdv, } (55)
d=— X;p{ Xc 8%, + Y, 8, + Xc580,) (56)
where
‘ Xpc =Dy Cpu— Dq_uicqu
Yp =Dy A, + D4,
and so on.
Substituting these values into (51) and (52), we obtain
E8¢, + F3%,+ Gdv,=0 (57)
Epé,+ Fb,+Gln,=0 (58)



1314

where
Ep = Aps - Cps XEéXDA - DstE}, Xca
F}; = Aqs - Cps XEéYDA - Dstc_1§YCA
G, = B,; — G,y Xp¢ Xpp — Dy Xcp Xcp
E,= Ay — Co Xpc Xps — Dy Xcp Xea
Fq == Aps - Cqs XECI’YDA - Dqs XC_LI)YCA
and

Gq = qu - Cqs XECI‘XDB - Dqs XEAXCB'
Thus, eliminating 8¢, from (57) and (58), we obtain
86, + Z8v, =0

(59)

where
z=(E; '~ E]'F,) (%G, - E;'G,).

The system is stable if and only if Z has eigenvalues
with positive real parts [5].

IV. DISCUSSION

In the discussion that follows, we examine the applica-
tion of the stability matrix Z, given by (59), to three cases
of particular interest: a) a single frequency, b) a fundamen-
tal and second-harmonic, and c) a three-frequency para-
metric system.

A. Single- Frequency Case

If only one frequency is considered, (59) should yield the
familiar Kurokawa stability condition. In this case, N= M
=1 and there are no constants ¢ and d. Also L=1, S=1,
and U= 0. Thus, from (57) and (58)

ap _dq _ o Vap
E,= 7 o’ B = 17w’ GP—BP_—W
_ 4 _9q _ op _n_VYiq
Eq'Aq—?)Z’ Fo=- P dw’ Gq_Bq_'W'
Thus
Vip  Viq 99 dp
| v v dw dw
S T "R W i P 7
Jw dw dw dw
ie.,
Y220 2. 22)
W dw IV Jw
= (60)
(38)+(5)
Jw Jw
Thus, Z > 0 requires
2992 3p)
(aV 3 de)” 0

which, by recalling the definition of p and g from (3), can
be recognized as the usual stability criteria for the single-
frequency oscillator [1], [6].

It is worth noting that, although the phase reference is
arbitrary, we cannot set 8¢ to zero, because the phase
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suffers perturbations about the arbitrary reference phase.
The rate of change of this phase deviation with respect to
time (cf., frequency and phase modulation) is then equal to
the real part of the frequency deviation. However, dp/d¢
and dq/d¢ are identically zero as the device impedance is
independent of the phase perturbations.

B. Two Harmonically Related Frequencies

For two harmonically related frequencies, Z is a scalar
quantity of the form given by (22). Values for a, B, v, ¢, 7,
and y may now be determined using the general expres-
sions in (57) and (58). For a fundamental and second-
harmonic

L= B] T= [‘1)] S=[1 0],andU=[0 1]. (61)
Thus, from (45), (49), and (50)
_dpy 20p, rs dp, _dq; | 20q, a A4,
Aps = dw, N dw, duw’ Ags = dw, * dw, duw,
(62)
_ dp, | 29p, _ dq,  20q,
By = v, * v, * T o, * v, (63)
_ ap, _ dq
Cps = %_2— s Lgs T _(90_2 (64)
_9m _9q
Dps_gaz—9 Dqs_ (9¢2 (65)
Replacing s by u, p; by p,, and ¢; by g, in (62)—(65), we
obtain the values of 4,,, 4,,, B,,, B,,, G,y Cpus Dyys
and D,,. Thus, in (55) and (56)
[ 9p g [ 9p 94
v, 0v, 09, 09,
Xpe = -—=|, X,= - 67
S o B e vl B
| 90, 99, | dv, v,
[ 4, dgy | A
¥ dw; dw ¥ dw, dw;
i 9%, 99, ) | dv, v, i
(68)
[ g, dp, ] [ dg,  dp, |
do, do, do, dw,
Y, , Yo = 69
L ool G I PR Tl
| 9b, Iy | | 90, 09, |
F%+23p2 _(9_(_13+28q2_
X dv, v, dv,  dv,
S Y T
| a¢2 a¢2 R
_%-*_ZHPZ é‘ﬁ_’_Z&qz_
¥ v, av, dv,  dv, (70)
< p, 94,
| dv, 99,
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Fig: 2. Coaxial oscillator circuit for study of second-harmoni¢ tuning.

The required parameters «, B8, v, €, %, and p may be
determined from the expressions in (57) and (58) for E,,
F,. G,, E,, F, and G,, respectively. Taking a as a typical
term and writing it in full, we obtain the expression

d, dg | [[3p  9g ]
g B _9p, | dey  de v, _ v
doy v, | 3p,  9g, 9, g,
¢, ¢, do, 99,
dp,  dg, | [[3p, 9,
_m dwl _ de a¢2 _ a¢2 (70)
9, | op, 99 9 94
dv, dv, | dv, Oy,

From this expression, the effect of including the second
harmonic in the stability analysis can be seen. If only the
fundamental is considered, a= dp,/dw,. The additional
terms arising when the second harmonic is considered
depend on changes in the fundamental impedance due to
the presence of the harmonic as well as the changes in the
second-harmonic impedance itself. Note that, in general,
terms like dp, /dv, and dp,/d¢,, which appear as multi-
- plying terms in (70), will be small and therefore, as would
be expected, the overall influence of harmonic terms will
be small. However, for example, a resonance at the
second-harmonic frequency will result in a large dq, /dw,
(recall that g, is the total reactance including the .external
circuit reactance). Depending on the sign and magnitude of
the other terms, this term could have either a stabilizing or
destabilizing effect. This could be particularly important in
the design of self-oscillating harmonic generators [7).

The influence of second-harmonic interactions on oscil-
lator stability is investigated by considering some applica-
tion examples. We consider the multiple slug-tuned coaxial
circuit shown in Fig. 2, which permits independent tuning
of the fundamental and second-harmonic at the design
frequency. Similar circuits have been used previously in the
study of second-harmonic effects in IMPATT circuits [8],
[10]. :

The oscillator circuit was designed for operation at 13.5
GHz. The 10-Q slug nearest to the diode is A /4 long,
where A is the wavelength at 13.5 GHz and thus has no
effect on the impedance at the second harmonic. The
second slug is a composite slug formed of two A /6 slugs
with a fixed spacing of 0.035 A, such that the electrical
length of the two A /6 slugs plus the gap is A /2. This slug
then has no effect on the fundamental impedance. At the
second-harmonic frequency, the second slug presents a
large impedance mismatch approaching that of a short
circuit, preventing second-harmonic power from reaching
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Fig. 3. Calculated frequency, stability factor, and output power as a
function of second-harmonic slug position for a 13.5-GHz oscillator.

the load. Thus, by keeping the position of the first slug
fixed and moving the second (composite) slug, the imped-
ance at the second harmonic may be varied relatively
independently of the fundamental impedance. Because the
design is frequency sensitive, the impedances are com-
pletely independent only at the design frequency. However,
as long as the position of the first slug is fixed, the
variations in oscillator frequency are small enough for the
impedances to be considered independent.

The oscillation frequency and output power were de-
termined from a circuit model of the oscillator structure
incorporating a nonlinear IMPATT diode data using the
analysis method of Bates and Khan [9], [10]. The deriva-
tives required to determine stability are calculated as part
of the minimization technique used to find the operating
point. The parameters of the IMPATT diode were derived
from typical X-band silicon IMPATT" diode data.

Fig. 3 shows oscillation frequency, output power, and
stability factor Z as a function of the position of the
composite slug, i.e., as a function of second-harmonic
impedance. The stability factor was calculated using both
the single-frequency stability criterion (due to Kurokawa)
and the two-frequency expressions derived in this paper.
Notice that, although no instability is indicated for either
expression (Z is always positive); there is a significant
difference in the value of Z when the second-harmonic
output is large (less than 15 dB below the fundamental).
Note also the hysteresis in the tuning characteristic associ-
ated with large second-harmonic output power. ;

Consider now an example in which the second harmonic
does influence stability. The same basic circuit-is used as
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Fig. 4. Calculated frequency, inverse stability factor, and output power
as a function of second-harmonic slug position for a 10.8-GHz oscillator.

previously, only the dimensions are modified so that the
circuit oscillates at 10.8 GHz, and the independent tuning
condition applies at this frequency. The calculated oscilla-
tion frequency, output power, and inverse stability factor
are shown in Fig. 4 as a function of the position of the
composite slug. The inverse of Z, rather than Z, is plotted
because, in the second-harmonic case, Z has a pole. How-
ever, we are interested primarily in the sign of Z. Note that
now the single-frequency stability criterion indicates stable
operation everywhere, but the two-frequency criterion indi-
cates unstable operation for slug positions less than 51.7
mm. :

In an attempt to understand the source of the instability,
we examined the terms of the stability expression and
found that the stability factor changes sign at the point
where

5_5%
E‘I Fq

Because E,, E,, F,, and F, are all complicated functions
of derivatives of impedance with respect to amplitude,
frequency, and phase, it is apparent that the source of the
instability cannot be attributed to any particular term, but
rather is due to many interacting derivative terms.

C. Three Parametrically Related Frequencies

Consider a three-frequency parametric system with two
independent oscillation frequencies w; and w,, and a third
frequency w; = w; — w,. Thus

1 0
L=|0 11.
1 -1
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This may arise in an oscillator with a fundamental
frequency w; and a low-frequency oscillation w,. This
situation is generally undesirable and can be avoided by
proper design procedures [11], [12]. However, it may be
worthwhile to examine this case because of its application
to self-oscillating frequency converters and because the
resulting expressions are believed to relate closely to the
response of the oscillator to internal and external noise
sources [13] or to injected signals [1]. That is, as the
oscillator nears an unstable condition, noise sources near
the frequency at which the instability occurs become
amplified and thus the oscillator output becomes noisy.
The relevance of the stability expressions to oscillator noise
performance warrants investigation, but is beyond the scope
of this paper.
For a parametric system, N =3 and M = 2. Thus

1 0 0
cefo 3| or-fo] sy 2y
1 -1 1
and
U=[o 0 1]

Using these matrices and following the solution method
given, we may determine the 2 X2 stability matrix Z. This
matrix indicates stability if it has eigenvalues with positive
real parts. This condition is satisfied if the determinant and
the sum of the principal diagonal elements are both greater
than zero [5], i.e., for stability

|Z]|>0
and
Z,,+Z,,>0.

V. EXPERIMENT

Experimental verification of the stability expressions de-
rived in this paper is a formidable task, made difficuit by
the impracticality of decisively identifying an unstable
operating point or experimentally measuring the stability
factor. Hysteresis in tuning characteristics, spurious oscilla-
tion, or abrupt changes in output power and frequency all
result from unstable operating points, but circuit condi-
tions other than instability can also cause these phenom-
ena. However, because the stability analysis requires first
the theoretical determination of the oscillator operating
point, results are presented here to show that accurate
theoretical determination of the oscillation state is possible
and that, for those theoretically determined oscillation
points verified experimentally, the stability analysis indi-
cates stable operation.

The IMPATT oscillator used in the experiments is shown
in Fig. 5. This circuit was chosen because it is known to be
prone to spurious oscillations, frequency jumping, and
noisy output as the position of a tuning slug or the diode
bias current is varied. It is thus particularly suitable for
studying instabilities. The coaxial structure can also be
readily and accurately modeled, provided care is taken to
account for the discontinuity capacitances associated with
the diode mount and the tuning slugs. Details of the
oscillator circuit, and the modeling and analysis of the
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Fig. 6. Comparison of measured and calculated frequency and funda-
mental and second-harmonic output powers as a function of dc bias
current. Two separate solutions of the oscillator equations are indi-
cated.

IMPATT diode and circuit are given elsewhere [9], [10]. It
should be emphasized that no RF measurements were
necessary to determine the parameters of either the diode
or the circuit and the only estimated parameter was the
series resistance of the diode. The oscillator frequency
output power and the diode and circuit impedances and
‘their derivatives used in the stability calculations were all
determined theoretically; it would be impractical to mea-
sure the derivatives experimentally.

Fig. 6 shows the measured and calculated fundamental
and second-harmonic powers delivered to the load as a
function of dc bias current, for a slug spacing of 105 mm.
At the threshold current of 25 mA, the measured frequency
of oscillation was 9.627 GHz. However, as the bias current
was increased to 30 mA, the oscillation jumped to 9.080
GHz and then increased slowly with bias current to 9.092
GHz at 70 mA. This behavior is typical of multiple-tuned
oscillator circuits. The output power at 25 mA was 4.2
dBm and increased smoothly to 19.4 dBm, despite the
frequency jump. The total output power was measured
with a power meter, while the second-harmonic output
power was determined by measuring the relative power
difference on a spectrum analyzer.

The theoretical results show good agreement with the
experimental values, including the two distinct oscillation
frequencies. However, the theory cannot predict at which
of the two frequencies the circuit will oscillate, as this
depends on transient behavior and the history of circuit
adjustment. At 50 mA bias, the calculated value of the
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TABLE I
COMPARISON OF MEASURED AND CALCULATED FREQUENCY AND
POWER FOR THE PARAMETRIC OSCILLATOR

T

CALCULATED MEASURED

FREQ.
(GHz)

POWER
{dBm)

FREQ.
(GHz}

POWER

FREQ.
NO. (dBm)

fp 9,723 13.55 9.771 15.41

1o 1.450 -2.15 1.498 -11.09

f-1 8.273. 1.43 8.273 5.41

stability factor Z was 0.22 ns™* for the higher frequency
mode and 0.072 ns™! for the lower frequency mode, ie.,
both modes are stable.

Fig. 7 shows the measured and calculated frequency and
output power at a bias current of 50 mA as a function of
the spacing between the slugs as the slug nearest the diode
was moved. Also shown is the RF power produced in the
diode, indicating a circuit loss between the diode and the
load ranging from 5 to 10 dB. As before, good agreement
exists between measured and calculated values. The stabil-
ity analysis indicates stable operation for all the calculated
values shown. However, although the experimental oscilla-
tor breaks into parametric oscillation for a slug spacing
greater than 106 mm, no instability at this point is predict-
ed by the analysis. This may be because other frequency
components not included in the analysis become important
under these conditions. In fact, at some slug positions, the
output spectrum of the oscillator showed in excess of ten
frequency components that were not harmonically related.

Finally, we consider a three-frequency parametric-oscil-

‘lator, in which the three frequencies f,, f,, and f_, satisfy

the relation
f:—l = j; - f;'

Table I gives a comparison of the measured and calcu-
lated frequency and output power values. The calculated
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stability matrix was

‘Z=[0.098 —0.390]
0131  0.6201

Thus, |Z|=0.112>0 and Z;, + Z;, = 0.718 > 0, indicat-
ing a stable (parametric) system. The maximum difference
between the measured and calculated frequency is 40 MHz,
while the agreement in output power is excellent at fre-
quencies f, and f_;, but is in error by about 9 dB at I
However, the output power is very sensitive to the real part
of the impedance at this frequency.

VI. CONCLUSION

Expressions have been derived which permit determina-
tion of the stability with respect to small perturbations in
the operating point of a negative-resistance oscillator with
a number of arbitrarily related frequency components pre-
sent in the output. Although the expressions are com-
plicated and the measurement of the various terms imprac-
tical, the expressions are easily calculated from theoretical
diode and circuit models with the aid of a computer. These
expressions should therefore find particular application in
the computer-aided design of solid-state oscillators and
harmonic generators [14].
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